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Abstract: In recent years, network attacks have been
characterized by diversification and scale, which in-
dicates a requirement for defense strategies to sacri-
fice generalizability for higher security. As the lat-
est theoretical achievement in active defense, mimic
defense demonstrates high robustness against com-
plex attacks. This study proposes a Function-aware,
Bayesian adjudication, and Adaptive updating Mimic
Defense (FBAMD) framework for addressing the cur-
rent problems of existing work including limited abil-
ity to resist unknown threats, imprecise heterogeneous
metrics, and over-reliance on relatively-correct axiom.
FBAMD incorporates three critical steps. Firstly, the
common features of executors’ vulnerabilities are ob-
tained from the perspective of the functional imple-
mentation (i.e., input-output relationships extraction).
Secondly, a new adjudication mechanism considering
Bayesian theory is proposed by leveraging the advan-
tages of both current results and historical confidence.
Furthermore, posterior confidence can be updated reg-
ularly with prior adjudication information, which pro-
vides mimic system adaptability. The experimental
analysis shows that FBAMD exhibits the best perfor-
mance in the face of different types of attacks com-
pared to the state-of-the-art over real-world datasets.
This study presents a promising step toward the theo-
retical innovation of mimic defense.
Keywords: mimic defense, Bayesian theory, func-
tional implementation, confidence
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I. INTRODUCTION

With the rapid development of mobile terminals and
information technology, cyberspace has emerged as a
powerful platform for the Internet of Things. At the
same time, the main challenge faced by diversified cy-
berspace is differentiated security threats. Namely, in-
creasingly complex security scenarios require defense
strategies to sacrifice generalizability for higher se-
curity, making it difficult to migrate defense strategy
within different domains. From the defender’s per-
spective, deploying a targeted defense strategy is es-
sentially an Attack-Defense Game, and it is easier to
attack than to defend, especially with unknown attack-
ers. However, the security research currently con-
ducted, i.e. firewalls [1], malware detection [2–4],
intrusion detection [5–7], intrusion tolerance [8], and
other passive defense techniques, can only cope with
attacks whose characteristics are known.

In fact, there is no absolutely secure system. It’s un-
feasible to prove that the defense technology imposed
on the system is trustworthy and free of vulnerabilities.
On the premise of the inability to circumvent endoge-
nous flaws in the system, the common challenge en-
countered in cybersecurity is how to deal with security
threats based on unknown vulnerabilities, backdoors,
and viruses in the absence of prior knowledge [9]. To
solve the above problem, it is necessary to change the
defense notion from the traditional “external” to “en-
dogenous”, in other words, only by improving the in-
herent dynamics and uncertainty of the system can we
turn “passive” into “active” in network attack and de-
fense.
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In recent years, academia and industry have been
trying to develop innovative, active defense technolo-
gies. By arranging decoys in the system and trick-
ing attackers to perform the attack, the honeypot tech-
nique [10–12] achieves the purpose of collecting prior
attack knowledge and inferring attack intent. Mov-
ing Target Defense (MTD) [13] introduces dynam-
ics in defense systems to increase the dynamics of
the attack surface and the uncertainty within the sys-
tem, which attenuates the attacker’s information ad-
vantage to a great extent. In practice, MTD has sev-
eral outstanding results in the areas of power sys-
tems [14–16], web servers [17], and cloud environ-
ments [18]. However, the honeypot technique requires
a large amount of prior knowledge from the attacker
[10], MTD is time-sensitive and uncontrolled, and the
high-frequency variability specifically makes the sys-
tem performance degraded [19]. As an emerging ac-
tive defense technique, Cyber Mimic Defense (CMD)
[20] additionally considers the heterogeneous and re-
dundant characteristics of the system and introduces
adjudication and negative feedback mechanisms to im-
prove the stability of the system. CMD theory has
been studied and practiced in distributed storage archi-
tectures [21], IoT [22], and cloud [23], showing better
defense results.

The core structure of mimic defense is “Dynamic,
Heterogeneous, Redundancy” (DHR), implying the
following basic ideas: (1) Heterogeneous. The
protected object is abstracted into a functional re-
gion. Several heterogeneous executors are con-
structed through diversely redundant design principles
to achieve the same function. (2) Dynamic. A schedul-
ing strategy is used to select the set of executors that
realize the function at the current moment, shifting and
changing the set over time to hide internal structure.
(3) Redundancy. A voting-based adjudication mecha-
nism is used to decide which executor has the correct
output and whether the mimic system is under attack.

There are several momentous problems in the cur-
rent research [24–27] on the traditional DHR. (1) The
division of functional regions of executors is homo-
geneous. Most studies in the field of mimic defense
only focused on representing functional regions by a
symbol set. Such expositions are unsatisfactory be-
cause they cannot complete detailed metrics. (2) The
research to date has tended to achieve a high degree of
dynamic rather than validity. Besides, almost no re-

searchers use historical information (usually inferring
the attacker’s propensity) to improve DHR’s perfor-
mance. (3) The voting-based adjudication mechanism
based on a relatively-correct axiom [9] has limitations
in several settings. The traditional voting strategy does
not take account of an even set of executors, nor does
it resist the attacker’s concerted attack.

To solve the aforementioned problems, this paper
proposes a novel mimic defense framework FBAMD
based on Bayesian theory. Our contributions mainly
include the following aspects:
• In view of the functional implementation, we ex-

tracted the common features of vulnerabilities
from the input-output relationships through ex-
ecutors, which provides a fine-grained definition
for the executors’ functions.

• Considering the intersection and difference of the
mapping sets (i.e., input-output relationships), the
heterogeneity metric is defined in conjunction
with the Common Vulnerability Scoring System
(CVSS), in addition, the confidence metric that
can adaptively update with tasks is designed.

• An adjudication mechanism independent of the
relatively-correct axiom is proposed by introduc-
ing the concept of Bayesian theory into the ar-
biter while the posterior confidence is calculated
by leveraging the advantages of historical infor-
mation to obtain trust results.

• We examined the effectiveness of our FBAMD
on real-world datasets, e.g., the Darknet2020
dataset [28]. Numerous experimental results
show that FBAMD has the highest classifica-
tion accuracy. We also analyze the causes
of the jitter phenomenon and introduce the
method of setting parameters to make the sys-
tem more stable. Our code is available at
https://github.com/dbsxfz/FBMAD.

The paper is organized in the following way. Sec-
tion II gives the related works. Section III introduces
the new definition of DHR from the perspective of
functional implementation. Section IV presents the
calculation methods of heterogeneity and confidence
respectively. Section V begins by laying out the appli-
cation of Bayesian theory and looks at how to update
posterior confidence. Section VI analyzes the security,
stability, and efficiency of FBAMD. Finally, the con-
clusion is drawn in section VII.
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II. RELATED WORK

Relevant prior work focuses on the current research
status of different defense concepts in cyberspace, in-
cluding both passive and active defense.

2.1 Passive Defense Concept

Most of the research on security up to now has been
passive in nature. “Passive” commonly refers to the
strategy that targeted an effective defense against at-
tacks with certain characteristics. For instance, recent
developments in the field of artificial intelligence have
contributed to a new round of innovation in passive
defense technology. Esmaeilpour et al. [29] evalu-
ated the resilience of Support Vector Machines (SVM)
in audio classification against adversarial attacks and
proposed a defense strategy based on a preprocessing
module. Al-Haija et al. [30] developed an intelligent
classification model based on machine learning meth-
ods to assist in identifying malicious packets in fire-
wall systems. Compared with ordinary deep learning,
Lian et al. [31] incorporated multimodal features into
deep learning, which contributes to multiple features
and adaptive learning. Wang et al. [32] introduced a
novel learning framework for capturing the structural
features of programs in accordance with Graph Neural
Networks (GNN), which combines probabilistic learn-
ing and statistical evaluation to detect code vulnerabil-
ities. Xu et al. [7] designed a Deep Neural Network
(DNN) based on a meta-learning framework for few-
shot network intrusion detection.

Recent evidence suggests that the widespread ap-
plication of machine learning technology in security
has spawned a considerable number of attacks target-
ing machine learning. Within the domain of artificial
intelligence, literature has emerged that offers contra-
dictory findings about the security of learning algo-
rithms. Chen et al. [2] proposed an adversarial at-
tack against machine learning that can successfully de-
ceive detectors. Jagielski et al. systematically studied
poisoning attacks against linear regression models and
proposed a considerably robust TRIM (a defense al-
gorithm against poisoning attacks in [33]). Wen et al.
[34] presented a novel defense algorithm termed Proda
by introducing the probability estimation of clean data
points into the algorithm for the first time. Compared
with TRIM, Proda dominates both effectiveness and

time complexity. Weerasinghe et al. [35] introduced a
new approximation of Local Intrinsic Dimensionality
(LID) for characteristic discrimination, which effec-
tively protects support vector machines from poison-
ing attacks and label flips. Flowers et al. [36] evalu-
ated adversarial machine learning attacks against deep
learning in a wireless communication environment.

However, questions have been raised about the ap-
plication of artificial intelligence technology in secu-
rity. It is unrealistic for defenders to be certain that the
defensive modules they impose are absolutely secure.
Alternatively, even the patch has some kind of vulnera-
bility, which just hasn’t been discovered and exploited
by attackers yet. To break the security chain of suspi-
cion once and for all, the defensive mindset needs to
be shifted to active.

2.2 Active Defense Concept

Different from the perspective of passive defense, ac-
tive defense pays little attention to the characteristics
of the attacker. It is more concerned with strength-
ening the system itself rather than dealing with the
attacker. Current research on active defense focuses
on honeypot technology, moving target defense, and
mimetic defense.

A honeypot is a closely monitored computing re-
source. Deployed as a decoy to examine attackers and
their attack strategies, it offers some important insights
into the improvement of cybersecurity infrastructure.
Agrawal et al. [12] deployed low and medium-
interaction honeypots in a public cloud environment
and analyzed the propensity of honeypots with differ-
ent interaction attributes to be attacked. Shan et al.
[11] explored a new honeypot approach trapdoors to
protect deep neural network models, which can ef-
fectively influence the generation of adversarial ex-
amples. Naik et al. [37] introduced Dynamic fuzzy
rule interpolation (D-FRI) for the detection and pre-
diction of fingerprinting attacks on honeypots. Learn-
ing from current network characteristics, it supports
more precise detection based on a dynamically en-
riched rule. Nevertheless, the effectiveness of a hon-
eypot to get attackers hooked requires a high level of
prior knowledge. The development of moving tar-
get defense (MTD) has gained fresh prominence with
many turning their attention to this dynamic strategy.

By changing its attack surface dynamically, MTD
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ensures the security of its own structure. The most
significant current discussions in MTD focus on two
aspects: modeling applications and performance anal-
ysis. On modeling applications, Zhang et al. [15]
deployed MTD against False Data Injection (FDI) at-
tacks in a power system and analyzed the strength
and running cost of MTD with different numbers of
branches. Higgins et al. [14] proposed an unsuper-
vised smart FDI attack, which is shown to be able to
maintain stealth in the presence of traditional MTD
strategies. Xu et al. [16] systematically studied the de-
sign difficulty of MTD in noisy environments and pro-
posed a robust MTD to guarantee the worst-case detec-
tion rate for all unknown attacks. Heydari et al. [17]
designed an MTD-based anti-censorship framework
for the Internet, which significantly reduces the per-
formance overhead. On performance analysis, Jin et
al. [18] developed a multi-dimensional attack graphs
model to formalize complex attack scenarios and pro-
posed an MTD deployment strategy that can be adap-
tively evaluated and optimized. Zhang et al. [38] in-
troduced diversity metrics to assess the resilience of
MTD against zero-day attacks, which inspired new
ideas for the evaluation of MTD. With the profound
study on MTD, the inherent problems of this mecha-
nism are exposed as follows. Such approaches, how-
ever, have failed to recognize attacks that have already
occurred. In addition, the dynamic nature of the MTD
imposed on the system leads to its operational ineffi-
ciency [19]. To this end, academics hope to find an
innovative theory of active defense.

Inspired by the “natural mimicry” phenomenon of
animals, Wu et al. [20] proposed Cyberspace Mimic
Defense (CMD) theory to deal with unknown vulner-
abilities in cyberspace. DHR is the core concept of
CMD [39]. DHR constructs a secure structure through
the combination of insecure individuals. CMD has
promising applications. Yu et al. [21] introduced
the DHR mechanism in distributed object storage ar-
chitecture, which significantly improved data secu-
rity. Sang et al. [22] established a mimic defense
model of the Edge-Computing terminal to prevent IoT
nodes from being maliciously forged. Based on CMD,
Zhou et al. [23] proposed a negative feedback dy-
namic scheduling algorithm that implements the real-
time monitoring of virtual machines in a cloud en-
vironment. To ensure the security of the NFV net-
work, Zhang et al. [40] presented a heterogeneous

entity pool construction method by genetic algorithm.
Dai et al. [41] introduced the application of mimic
defense in industrial control systems (ICS). Li et al.
[42] proposed an intelligent flow-forwarding scheme
with endogenous security in a software-defined net-
work (SDN) architecture.

The literature on mimic defense technology has
highlighted security performance in terms of hetero-
geneous metrics, scheduling strategy, and adjudication
feedback [43, 44]. Zhang et al. [24] combined hetero-
geneity and confidence to characterize the executors
and introduced the Technique for Order Preference
by Similarity to an Ideal Solution (TOPSIS) to opti-
mize the scheduling strategy. Li et al. [25] proposed
the concept of time and task threshold in scheduling,
which is used to design a multi-level queue dynamic
scheduling strategy. Wu et al. [26] introduced ran-
dom seeds to the scheduling, making the replacement
of service executors set completely random. Shao
et al. [27] summarized the false-positive problem of
mimic systems, while the best mimic component set
theory is proposed to solve the problem. Essentially,
scheduling strategy is the key to DHR, but a dynamic
scheduling strategy cannot be separated from the ex-
traction of heterogeneous and redundant characteris-
tics. How to improve the heterogeneous metrics to en-
hance the dynamics of the scheduling process is a cur-
rent research hotspot. To solve the problems of large
granularity of heterogeneous metrics, inadequate uti-
lization of historical information, and over-reliance on
relatively-correct axiom for adjudication mechanism,
this paper designs a novel mimic defense system with
a new definition of functional mapping.

III. PRELIMINARY

In this section, we first list the notations and abbrevia-
tions used in this paper in Table 1 for ease of reading.
Furthermore, we introduce the basic structure of DHR
and then take a deep dive into our new definition from
a functional implementation perspective.

3.1 Basic Structure of DHR

“Dynamic, Heterogeneous, Redundancy” (DHR) is
the key structure of mimic defense. Combining func-
tionally equivalent executors with implementations
that are structurally heterogeneous in hardware or soft-
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Table 1. Main notations and abbreviations.

Notation
n redundancy of the service set
Pi the ith executor
ω
(i)
1 first type of error of Pi (Def. 8)

ω
(i)
2 second type of error of Pi (Def. 9)

ω
(i)
3 function mapping of Pi (Def. 10)

ω
(i)
4 unknown function mapping of Pi (Def. 11)

Vk(P ) all k-order symbiotic vulnerabilities in {P} (Eq. (2))
Ak(P ) all k-order symbiotic areas in {P} (Eq. (4))
Het(P ) heterogeneity of {P} (Def. 14)

N current adjudication order
M the number of valid adjudications (M = N − 1)
Mi task threshold of Pi

coni(M) confidence factor of Pi after the M th adjudication (Def. 15)
γi(M) decay factor of Pi after the M th adjudication (Def. 16)
DN the output information in the N th adjudication
yN the set of output results in the N th adjudication
Fi yi ∈ yN is the correct output, ∀i ∈ [n

′
]

F0 the correct output is not observed by yN
Em(N)i historical adjudication information (Def. 18)

T+
i Pi makes a correct judgment

T−
i Pi makes an incorrect judgment

Abbreviation

FBAMD
Function-aware, Bayesian adjudication,

and Adaptive updating Mimic Defense theory
MTD Moving Target Defense
CMD Cyber Mimic Defense
DHR Dynamic, Heterogeneous, Redundancy
StatP Statistical-based Poisoning Attack [33]

TRIM
a defense algorithm against poisoning attack

using a trimmed loss function [33]
alfa Adversarial Label Flip Attack [35]

K-LID-SVM
a defense algorithm using Kernel distance

in the Local Intrinsic Dimensionality calculation [35]
Logi a poisoning attack against Logistic Regression [45]

ware, a service set is built to achieve the required func-
tions. By adding multi-dimensional dynamic uncer-
tainties to the system, including dynamic scheduling,
reconfiguration, and virtualization, DHR makes it ex-
ponentially more difficult for attackers to obtain valid
information about the system and carry out a targeted
attack at the current moment, thus achieving an effec-
tive defense against attacks from unknown sources.

The mimic defense system mainly consists of the
following components: input agent, service set, wait-
ing set, arbiter, and scheduler, which are shown in Fig-
ure 1. During operation, the input agent collects input
data and assigns it to heterogeneous executors in the
service set. Each executor processes the data indepen-
dently and maps the input data to the output space, and
then the arbiter decides the final output of the mimic
defense system from the output space according to a
certain strategy. In addition, the information from each
adjudication is fed back to the scheduler, which ana-
lyzes the feedback and uses an appropriate strategy to
select executors from the waiting set to update the ser-

Input Space

Input Agent

Service Set

Arbiter

Output Space

Scheduler
Feedback

Waiting Set

Strategy

I

O

Figure 1. DHR framework.

vice set.
Composed of differentiated hardware and software

structures, the executor is the individual that imple-
ments the function in DHR. For the implementation of
certain functions, the executor is designed and given a
specific structure. These functions that determine the
structure of an executor are defined as desired func-
tions. However, under some specific input or envi-
ronmental stimulation, the executor may also imple-
ment other functions beyond the desired functions,
which are partly explicit side effects and the rest com-
pletely unknown. These functions that we do not
want to implement are uniformly defined as dark func-
tions. It should be particularly emphasized that even
if two executors have the same structure, their actual
hardware or software implementations cannot be com-
pletely identical. In other words, executors that are ex-
pected to have identical functions do not have the same
dark functions, which provides the necessary condi-
tions for the heterogeneity and redundancy of execu-
tors.

3.2 Functional Implementation

Functional implementation is the theoretical founda-
tion of our FBAMD framework. There is no existing
work on defining the mathematical theory of symbiotic
vulnerabilities by analyzing the process of functional
implementation. We present this essential analytical
idea for the first time. The rest of the narrative is de-
veloped on this basis.

First, the concept of the Turing machine model is
introduced. Turing machine is a mathematical compu-
tational model, which defines an abstract machine that
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Figure 2. Functional implementation.

can read and write data on paper tape according to a
specified table of rules. Turing believed that such a
machine would be able to simulate any computational
process that humans could perform [46]. Inspired by
the Turing machine model, the functional implemen-
tation of an executor is essentially a replacement for
humans to perform tedious computations, and the ex-
ecutor itself does not have the function to generate
functions. If the process of functional implementation
is analogous to the Turing machine model, the imple-
mentation of different functions of an executor can be
expressed as different transfer functions obeyed by the
machine to perform read and write operations on the
data stream. For a finite input space, the output space
mapped by the transfer function is also finite, so the
mapping rule table of the machine can be extracted
from it. In this case, the executor corresponds to its
mapping rule table one-to-one. For a better explana-
tion of the above process, we define the important con-
cepts as follows.

Definition 1. Transfer Function δi(·). The way input
data is processed within an executor is abstracted as
using a transfer function to map it. We define the trans-
fer function of the ith executor Pi as δi(·). Assuming
that Pi reads in data as x and the output of the execu-
tor is y, then y satisfies y = δi(x).

Definition 2. Input space Σ and output space Γ. The
sets Σ, Γ contain all possible occurrences of x, and y,
respectively. Provided that the input space Σ and the
transfer function δi(·) are known, the output space Γ

is uniquely determined.

Definition 3. Mapping pair (x, y). We define the
binary-ordered group as a mapping pair when the in-

put data x is mapped by a certain transfer function to
y.

Definition 4. Mapping rule table Ωi. Provided that
the input space Σ and the transfer function δi(·) are
known, We define all mapping pairs generated by δi(·)
as the mapping rule table for the executor Pi, denoted
as Ωi.

Definition 5. Functional implementation. One func-
tional implementation means that the executor reads
one unit of data distributed by the input agent and gets
the output after mapping by the transfer function. As
shown in Figure 2, the input agent can convert the in-
formation input to the system into elements in the input
space and assign them to the executor, enabling the ex-
ecutor to complete the function mapping.

Definition 6. Desired function set {(ao, Ao)}o∈Λi
. As

users, we want the executor Pi to successfully out-
put Ao on input ao, then the mapping pair (ao, Ao) is
an element in the desired function set {(ao, Ao)}o∈Λi

.
Since the desired function is the existing condition for
executor Pi, indicator set Λi is known.

Definition 7. Dark function set. Theoretically, the im-
plementation of any desired function derives explicit
side effects or implicit unknown functions, and these
non-desired functional parts are defined as the dark
function set. The dark function set can be expressed as
the mapping rule table removing the desired function
set.

Many researchers have simply utilized symbols to
measure function sets, which lacks analysis of the
function from the essence. From the perspective of
functional implementation, a binary-ordered set with
the indicator set known is a refined way of measuring
functionality.

The emergence of dark function is the inevitable re-
sult of the multifaceted nature of things. The philo-
sophical essence of the endogenous security problem
is the structural contradiction of the target object [9].
According to our definition from the functional imple-
mentation perspective above, the common features of
endogenous security problems can be normalized and
expressed as follows: In the service set, functions with
explicit side effects within a common subset of dark
functions are implemented.

To distinguish the dark function set with explicit
side effects, we next divide the mapping rule table in
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Figure 3. FBAMD framework.

more detail. Assume that the desired function set is
{(ao, Ao)}o∈Λi

.

Definition 8. First type of error ω
(i)
1 . We define all

mappings similar to (ao, Y ) in the mapping rule table
Ωi as the first type of error ω

(i)
1 , where Y ∈ Γ, Y ̸=

Ao, ∀o ∈ Λi.

Definition 9. Second type of error ω(i)
2 . We define all

mappings similar to (X,Ao) in the mapping rule table
Ωi as the second type of error ω

(i)
2 , where X ∈ Σ,

X ̸= ao, ∀o ∈ Λi.

Definition 10. Function mapping ω
(i)
3 . We define all

mappings similar to (ao, Ao) in the mapping rule table
Ωi as the function mapping ω

(i)
3 , ∀o ∈ Λi. Function

mapping is essentially part of the mapping rule table
that belongs to the desired function set.

Definition 11. Unknown function mapping ω
(i)
4 . We

define all mappings similar to (X,Y ) in the mapping
rule table Ωi as the unknown function mapping ω

(i)
4 ,

where X ∈ Σ, Y ∈ Γ, X /∈ {ao}, Y /∈ {Ao}.

Obviously, Ωi = ω
(i)
1 ∪ ω

(i)
2 ∪ ω

(i)
3 ∪ ω

(i)
4 and ω

(i)
1 ,

ω
(i)
2 , ω(i)

3 , ω(i)
4 mutually disjoint.

According to the above definition, ω(i)
1 and ω

(i)
2 are

the dark function set with explicit side effects, ω(i)
3 is

the desired function set, and ω
(i)
4 is the dark function

set with implicit functions. In a real-world scenario,
the implementation of ω(i)

1 will result in the absence
of the desired function, while the implementation of
ω
(i)
2 will lead to an unexpected implementation of the

desired function.

To analyze the safety of the mimic system, a certain
degree of simplification is required, which is given in
the form of assumptions.
Assumption 1: From the perspective of functional im-
plementation, all mapping pairs have the same status
in the mapping rule table.

There are differences in the difficulty of implemen-
tation depending on the type of functions. However,
mapping pairs are a refined decomposition of func-
tions. The different objectives of the functions are re-
flected in the different types of mapping pairs, while
the different difficulties in implementing the functions
are embodied in the different numbers of mapping
pairs. Essentially, mapping pairs are the most basic
units of function, and there is no metric difference be-
tween different kinds of mapping pairs.
Assumption 2: The input space and output space of
the executor are both limited.

The Turing machine model restricts its input alpha-
bet to be limited. Extending to any one executor, the
data types that can be recognized by its underlying
processor are also limited. Consequently, after the
mapping of the transfer function, its output space is
also limited.
Assumption 3: Mimic system components that can be
implemented by hardware logic are theoretically se-
cure.

We assume that the input agent, arbiter, and sched-
uler as in Figure 1 are secure. The input agent un-
dertakes data read-in and distribution, the arbiter is
responsible for data comparison and human-computer
interaction, and the scheduler controls component re-

China Communications 7



placement of the service set. With simple hardware
logic implementations, their security can be proven by
formal analysis.
Assumption 4: The attacker will tend to successfully
attack more executors.

For a greater influence on the system output results,
the attacker will attack as many executors within the
service set as possible to make it wrong. In other
words, attackers treat the executors equally. Without
enough prior knowledge, an attacker does not appear
to have the propensity to attack a particular executor.

3.3 FBAMD Framework

As shown in Figure 3, we design three major com-
ponents in FBAMD: heterogeneity calculation (in ser-
vice set), confidence and its updating (in executor),
and Bayesian adjudication (in arbiter).

(1) Heterogeneity Calculation (service set): The
heterogeneity of the service set is calculated based on
the symbiotic vulnerability (red region in Figure 3)
and symbiotic area (grey region in Figure 3) of the
executors within the current service set. The hetero-
geneity is used to determine the strategy for replacing
executors. When a replacement occurs, the executor
in the waiting set with the highest heterogeneity to the
executors in the current service set will be swapped in.

(2) Bayesian Adjudication (arbiter): After obtain-
ing the output results for each executor, the arbiter
makes a decision based on the confidence of the ex-
ecutor using Bayesian theory. The results of each ad-
judication are saved in the historical adjudication in-
formation.

(3) Confidence and its Updating (executor): The
confidence of an executor consists of two components,
correctness and the number of tasks implemented. Af-
ter several adjudications, the confidence is regularly
updated with historical adjudication information (red
dots for errors in Figure 3) by Bayesian theory and ex-
ecutors that drop below the threshold will be replaced.

IV. DESIGN OF EVALUATION METRICS

Most existing work of mimic defense listed in Sec-
tion II has only designed a heterogeneity metric to cap-
ture the characteristics of the service set, without tak-
ing into account the specificity of each executor. How-
ever, it is necessary to establish a separate metric for

each executor to achieve a fine-grained design of the
mimic system.

In this section, we introduce and present the calcula-
tion methods of heterogeneity and confidence metrics,
which are built on the service set and executor respec-
tively.

4.1 Heterogeneity

With the desired function set identical, the DHR struc-
ture requires the least intersections of the dark function
set between heterogeneous executors in the service set.
Consequently, a metric is demanded to evaluate the
variability of dark function sets within an executor set,
namely, heterogeneity.

Definition 12. k-order symbiotic vulnerability. In an
executor set, we define (x, y) as a k-order symbiotic
vulnerability when (x, y) occurs only in k executors’
ω1 or ω2, k ⩾ 2.

Compared with previous work that used the inter-
section of the entire dark function set to calculate sym-
biotic vulnerability [24–26], only ω1 and ω2 in the
dark function set can lead to vulnerability from the
perspective of functional implementation. Next, the
intersection part of ω1 and ω2 is considered to intro-
duce the calculated approach of the k-order symbiotic
vulnerability between an executor set.

For an executor set {P} = {P1, P2, · · · , Pn} with
n redundancy, the set of all subsets of {P} with k el-
ements is denoted by {Πk}. {Pk}j is the element in

{Πk}, where
∣∣∣{Pk}j

∣∣∣ = k, |{Πk}| = Ck
n, j ∈ [Ck

n].
All k-order symbiotic vulnerabilities in {Pk}j can be
expressed as,

Vk({Pk}j) =
⋂

Pi∈{Pk}j

ω
(i)
1 ∪ ω

(i)
2 , (1)

where i ∈ [k].

To ensure that a k+1−order symbiotic vulnerabil-
ity is not repeatedly computed as k k-order symbiotic
vulnerabilities, it is necessary to remove all elements
that recur between Vk({Pk}j). All k-order symbiotic
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vulnerabilities of {P} can be expressed as,

Vk(P ) =
⋃

j∈[Ck
n]

Vk({Pk}j)

\
⋃

j1 ̸=j2

Vk({Pk}j1) ∩ Vk({Pk}j2),
(2)

where j1, j2 ∈ [Ck
n].

Definition 13. k-order symbiotic area. In an executor
set, we define (x, y) as a k-order symbiotic area when
(x, y) occurs only in k executors’ mapping rule table
Ω, k ⩾ 2.

Similarly, all k-order symbiotic areas in {Pk}j can
be expressed as,

Ak({Pk}j) =
⋂

Pi∈{Pk}j

Ωi, (3)

where i ∈ [k].
All k-order symbiotic areas of {P} can be expressed

as,

Ak(P ) =
⋃

j∈[Ck
n]

Ak({Pk}j)

\
⋃

j1 ̸=j2

Ak({Pk}j1) ∩Ak({Pk}j2),
(4)

where j1, j2 ∈ [Ck
n].

If an attacker can perform a coordinated attack, after
acquiring the characteristics of the symbiotic vulnera-
bility, a simultaneous attack on the executors within
an executor set may successfully cause the arbiter to
output an incorrect result. Consequently, to make the
probability of symbiotic vulnerabilities between actu-
ators as small as possible, the criteria for selecting an
executor set are as follows: (1). Minimize the number
of symbiotic vulnerabilities within the executor set.
(2). Maximize the number of symbiotic areas within
the executor set. The following definition is intended
to measure the above conclusions.

Definition 14. Heterogeneity Het(P ). Heterogene-
ity is a comprehensive static metric for evaluating the
variability of dark function sets within an executor set
{P}. The smaller the heterogeneity, the more difficult
for attackers to identify the symbiotic vulnerabilities
and conduct an effective attack.

For the calculation of the heterogeneity, we should
not only consider the symbiotic vulnerabilities of a
certain order but also combine orders from 2 to n com-
prehensively. Higher-order symbiotic vulnerabilities
pose a greater threat to the system, resulting in con-
siderable weight. From the perspective of vulnerabil-
ity construction, a k-order symbiotic vulnerability can
be decomposed into k k − 1-order symbiotic vulner-
abilities, and each k − 1-order symbiotic vulnerabil-
ity can be decomposed into k − 1 k − 2-order symbi-
otic vulnerabilities, and so on. Mathematically, a K-
order symbiotic vulnerability should be AK−L

K times
more threatening than an L-order symbiotic vulnera-
bility (L < K).

For an executor set {P} with n redundancy, hetero-
geneity can be calculated as,

Het(P ) = 1− 1

AN
NC

N∑
k=2

CkA
k
N |Vk(P )|

N∑
k=2

|Ak(P )|
, (5)

where Ck is the risk indicator for the k-order symbiotic
vulnerability. We can obtain Ck through CVSS [47].
C = 10 is a normalized constant.

For any {P}, Het(P ) is a real number between
(0, 1). With the number of symbiotic vulnerabilities
constant, heterogeneity decreases as the proportion of
high-order vulnerabilities increases. In contrast, het-
erogeneity increases monotonously with the expan-
sion of the symbiotic areas owing to the reduction of
symbiotic vulnerabilities’ proportion. When replace-
ment is required for a mimic defense system, an ex-
ecutor is specially chosen from the waiting set because
it can maximize the heterogeneity of the service set.

4.2 Confidence

Different from heterogeneity, which is a security mea-
surement of an executor set, confidence considers the
trustworthiness of a particular executor. According to
the evaluation criterion of heterogeneity, an executor
set with the maximum heterogeneity ensures the best
security of the mimic defense system. Nevertheless,
if attacks selectively attack certain symbiotic vulner-
abilities with partial prior knowledge, the security of
the mimic defense system is still considered threat-
ened. To dynamically assess attackers’ knowledge of
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the mimic system, we propose a confidence metric
based on the confidence factor and decay factor.

Definition 15. Confidence factor coni(M). Confi-
dence factor is a measure of the trustworthiness of ex-
ecutors from their own perspective. Since coni(M) is
related to the number of valid adjudications M , it also
has the ability to change dynamically.

It’s necessary to mention that this section only de-
scribes how the initial confidence factor coni(0) is set.
The confidence factor posterior updating is introduced
in Section V.

Before entering the service set, the initial confidence
factor coni(0) can be derived from the executor’s in-
formation or historical experience. Compared with
previous work that defaulted to the principle of indif-
ference and set the initial confidence factor coni(0) to
the same parameter, we analyze the mapping rule table
to obtain reasonable information about the executor.

Inspired by the confusion matrix, we set the input
data as the true category and the output data as the pre-
dicted category of the system. When {(ao, Ao)}o∈Λi

is
the desired function set of Pi, inputting x ∈ {ao} in-
dicates that x belongs to the positive class, otherwise
x belongs to the negative class. Outputting y ∈ {Ao}
indicates that Pi predicts y to be in the positive class,
otherwise Pi predicts y to be in the negative class. Ac-
cording to the four divisions of the mapping rule table,
ω
(i)
1 , ω(i)

2 , ω(i)
3 , ω(i)

4 are also known as true positive,
true negative, false positive, and false negative, respec-
tively.

In this setting, precision and recall of the executor
Pi can be computed by using Eq. (6) and Eq. (7). Pre-
cision denotes the percentage of the desired functional
input that completes the desired functional output. Re-
call measures the percentage of the desired functional
output that comes from the desired functional input.

prei =

∣∣∣∣ ω
(i)
3

ω
(i)
1 + ω

(i)
3

∣∣∣∣, (6)

reci =

∣∣∣∣ ω
(i)
3

ω
(i)
2 + ω

(i)
3

∣∣∣∣. (7)

If an executor has a larger precision, it prefers
to complete functional implementation as possible,
which may lead to the second type of error instead.

Similarly, a greater recall reduces unexpected func-
tional implementation, which results in the first type
of error.

Considering the different focuses of precision and
recall, we choose the initial confidence factor coni(0)

as a reconciliation averaging metric to avoid the ex-
treme number of ω(i)

1 or ω(i)
2 , which is also known as

the F1-score.

coni(0) =
2prei · reci
prei + reci

. (8)

Definition 16. Decay factor γi(M). Decay factor
takes into account the trend of the trustworthiness of
the overall service phase, which provides a decreasing
trend for the confidence factor as the number of valid
adjudications M increases. It enables the executor to
be swapped out after achieving a specific number of
functional implementations, preventing attackers from
acquiring substantial features due to long-time work.
γi(M) can be calculated by:

γi(M) =
Mi

Mi +M
, (9)

where M is the number of functional implementations
completed by the executor Pi at the current moment.
γi(M) is a concave function monotonically decreasing
with respect to M , satisfying limM→∞ γi(M) = 0.
Mi is the task threshold of Pi that can control the de-
cay rate of γi(M). For the dynamics and controlla-
bility of the scheduling by the mimic system, the task
thresholds of executors should satisfy a certain distri-
bution. At the same time, by assigning the parameters
of the distribution function artificially, it is possible to
control the range of threshold values. A task threshold
can be determined using sampling techniques.

The long-term practice of academia and industry
shows that normal distribution satisfies our require-
ment for threshold selection. Mathematically, the cen-
tral limit theorem states the conditions that a ran-
dom variable under the influence of multiple factors
approximately follows a normal distribution. Con-
sequently, artificially given parameters µ, σ, Mi ∼
N(µ, σ). Based on the probability density function,
the Ziggurat algorithm is employed to select the ran-
dom threshold [25].

In practice, it is indispensable to limit the selection
range of the threshold. A too-large threshold may lead
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to the continuous work of an executor, while a thresh-
old that is too small or even less than 0 means invalid.
According to the 3σ principle [48], the probability of
sampling results beyond (µ− 3σ, µ+ 3σ) is less than
0.3%. Excluding this almost impossible threshold in-
terval can make the scheduling smoother. Certainly,
it is important to note that given µ, σ should satisfy
µ− 3σ > 0.

Definition 17. Confidence Coni(M). Confidence
is a dynamic and comprehensive metric to evaluate
the trustworthiness of Pi after the N th adjudication.
Higher confidence indicates that the executor is rela-
tively more difficult to be controlled by an attacker.

Combining the above two factors, the confidence of
Pi can be described by,

Coni(M) = coni(M) · γi(M). (10)

Algorithm 1. Initialization

Input: Redundancy of the service set n, CVSS score
of k-order symbiotic vulnerability Ck, normal dis-
tribution of task threshold N(µ, σ).

1: Store all subsets of the waiting set with n elements
in {Πn};

2: for Ps ∈ {Πn} do
3: Calculate Het(Ps) according to Eq. (5);
4: end for
5: Get initial service set P ← argmax

Ps

Het(Ps);

6: for i = 1 : n do
7: Sample from N(µ, σ) to get Ni;
8: Calculate Coni(0) according to Eq. (10) for

Pi ∈ P ;
9: end for

Output: Initial service set P .

The steps for initializing the mimic system are
shown in Algorithm 1. First of all, all possible service
sets from the waiting set are stored into {Πn} (line
(1)). Secondly, the heterogeneity of each service set
scheme can be calculated according to Eq. (5). The
scheme with the largest heterogeneity is selected as
the initial service set P (line (2)-(5)). Finally, for each
executor in P , a task threshold is sampled from the
normal distribution N(µ, σ) and the initial confidence
Coni(0) is calculated according to Eq. (10) (line (6)-
(9)). At this point, the entire initialization process

from selecting the set to calculating the initial confi-
dence is completed, and the subsequent working pro-
cess is detailed in Algorithm 2.

V. BAYESIAN FRAMEWORK

To address the current problems of existing work in-
cluding over-reliance on relatively-correct axiom and
poor robustness, a novel adjudication approach under
a probabilistic framework that combines heterogeneity
and confidence metrics is proposed.

This section presents two applications of Bayesian
theory to the mimic system we have designed:
Bayesian adjudication and confidence factor posterior
updating.

5.1 Bayesian Adjudication

Mimic adjudication plays a role in the arbiter, in
essence: all outputs within the service set are given
to the arbiter, from which the arbiter chooses the one
that most resembles the correct output.

Bayesian adjudication is the basic method of im-
plementing decisions under the framework of proba-
bility. Bayesian adjudication considers all executors
in the service set to be trustworthy, which is mea-
sured by their confidence metric. As an independent
group member, each executor gives the correct out-
put they think. As the group leader, combining the
confidence of each member, the arbiter obtains the re-
sult with the highest posterior probability as the final
output based on Bayesian theory. Traditional voting
strategies based on relatively-correct axiom only ex-
ploit the quantitative characteristics of the outputs, ig-
noring the information reflected by individual cases.
By contrast, Bayesian adjudication combines the cur-
rent confidence and all outputs to make a judgment,
which is more convincing.

Assuming that N − 1 adjudications have been com-
pleted (M = N − 1), in the N th adjudication, the
output information of a service set with n redun-
dancy is denoted as DN . The set of output results
is denoted as yN = {y1, y2, · · · , yn}, where n is the
number of elements in yN . Define events set A =

{F0,F1, · · · ,Fn′}, where n
′

is the number of differ-
ent kinds of elements in yN , event Fi means that yi ∈
yN is the correct output, ∀i ∈ [n

′
]. For instance, there

is n = |{B,B,A,B}| = 4 and n
′
= |{B,A}| = 2
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Table 2. Confidences and probabilities for case (a) and case (b), M = N − 1.

Case
Confidence Prior probability Posterior probability

Con1(M) Con2(M) Con3(M) Con4(M) P (F1) P (F2) P (F0|DN ) P (F1|DN ) P (F2|DN )

(a) 0.2 0.2 0.8 0.2 0.25 0.75 0.20 0.99 0.01
(b) 0.4 0.8 0.6 0.5 0.50 0.50 0.19 0.36 0.64

in Figure 4(a). Considering that the correct output can
be any value in the output space Γ, it is possible that
the correct output is not observed by yN , which is re-
garded as F0. Symbolically, event F0 means: ŷ is the
correct output, ŷ ∈ Γ, ŷ /∈ yN .

The posterior probability P (Fi | DN ) of the arbiter
taking yi as the correct output result can be expressed
as,

P (Fi | DN ) =
P (Fi)P (DN | Fi)

P (DN )
, i ⩾ 1, (11)

where
P (Fi) is the prior probability. According to the idea

of frequency approaching probability, in this scenario,
P (Fi) is set as the proportion of yi in yN ;
P (DN | Fi) is the likelihood. Under the condition

that yi is the correct output, P (DN | Fi) represents the
probability that the service set gets the output informa-
tion DN . Conj(N−1) denotes the probability that Pj

gets yi. Since the executors in the service set are inde-
pendent of each other, P (DN | Fi) is the product of
the probability of getting each executor’s output;
P (DN ) can be calculated using the full probability

formula,

P (DN ) =

n
′∑

i=1

P (Fi)P (DN | Fi). (12)

Especially, if F0 occurs, it indicates that there is no
valid prior information in DN . According to the prin-
ciple of indifference, for any Fi in A, P (Fi) =

1
n′+1

.
P (F0 | DN ) can be simplified as,

P (F0 | DN ) =
P (DN | F0)∑n′

i=0 P (DN | Fi)
. (13)

Compared with other Fi, the posterior probability
P (F0 | DN ) needs to be calculated separately.

Consequently, the expected result of the Bayesian

adjudication is,

ŷ = argmax
i

P (Fi | DN ). (14)

In Bayesian adjudication, P (F0 | DN ) can be con-
sidered as a baseline for all posterior probabilities. If
∀i, P (Fi | DN ) ⩾ P (F0 | DN ), it means that the
probability of any yi ∈ yN being the correct output is
less than the probability of all of the executors being
wrong. In this case, the arbiter is unable to get the cor-
rect output. The system requires initialization of the
service set or executor updating. However, F0 occurs
only when each executor’s confidence is less than 0.5.
In general, with the confidence factor posterior updat-
ing described next, we will not tolerate the occurrence
of F0.

Figure 4. Example of a service set of four redundancy in
N th adjudication.

To illustrate the advantages of Bayesian adjudica-
tion over voting strategy, in Figure 4 we show a sim-
ple example in a service pool of 4 redundancy. We
consider that (a,A) ∈ ω3, (b, B) ∈ ω4, A =

{F0,F1,F2}, where F0: Both A, B are wrong, F1:
A is the correct output, F2: B is the correct output. In
Figure 4(a), we input a: Only the executor P3 outputs
A, whereas in Figure 4(b), we input b: Both P1 and
P2 output B. In Table 2, we detail the confidences and
probabilities for case (a) and case (b) respectively. We
can observe that Bayesian adjudication always outputs
the correct result.

In Figure 4(a), we show a relatively extreme case
that the confidences of P1, P2, P3, P4 are 0.2, 0.2, 0.8,
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and 0.2, respectively. From the outputs, it can be ob-
served that P1, P2, and P4 all make the first type of
error. This can be due to the interference of attackers.
However, in Table 1 we appreciate that the probabil-
ity that A is the correct output is much higher than
that of B and the baseline value (the probability that
both A and B are wrong), which reflects the robust-
ness of Bayesian adjudication in certain attack scenar-
ios. According to Assumption 4, when the attacker has
no knowledge of the confidences of executors, P1, P2,
and P4 will make an error earlier than P3 theoretically
under a uniform attack. In the worst case as (a), the
Bayesian adjudication is still able to output the correct
result A, while the voting strategy based on relatively-
correct axiom will output the wrong result B.

In Figure 4(b), We analyze a more general case that
the confidences of P1, P2, P3, P4 are 0.4, 0.8, 0.6,
0.5, respectively. Although the low confidence of P1

brings negative effects to the judgment of the correct
result B, decision power is still dominated by P2. Inci-
dentally, the voting strategy based on relatively-correct
axiom will fail when the output is equally divided as
in case (b), whereas the Bayesian adjudication demon-
strates a higher universality.

5.2 Confidence Factor Posterior Updating

Confidence factor posterior updating reflects the be-
havior of the mimic system in changing its internal
characteristics based on real-time attack information.
During the operation of the mimic system, there is
quite a bit of information available in addition to the
output results, for example, whether each actuator cor-
rectly outputs what the arbiter considers to be the
correct result. According to the introduction section
IV, the value of confidence is the key to whether the
Bayesian adjudication can produce the correct output
results. To improve the accuracy of the arbiter and en-
hance the dynamics of the system, we propose a poste-
rior updating strategy for confidence based on histori-
cal adjudication information.

Definition 18. Historical adjudication information
Em(N)i. Em(N)i is defined as the number of errors
made by Pi in the N th to N+mth adjudications. This
information can be easily extracted from the mimic
system and recorded, and it reflects the performance
of the executor’s adjudications recently. The ratio of
Em(N)i to m will increase significantly if the executor

Algorithm 2. Mimic System Working Process

Input: Current adjudication order N , input data
sequences {xk}, updating step m, confidence
threshold Conth, size of waiting set W .

1: Initialize Em(N)i ← 0;
2: for k = N : N +m do
3: Input xk into the system;
4: Collect the output information Dk;
5: Calculate P (Fi | Dk) according to Eq. (11) and

Eq. (13);
6: Arbiter output ŷk ← argmax

yi

P (Fi|Dk);

7: for i = 1 : n do
8: if ŷk ̸= yi then
9: Em(N)i ← Em(N)i + 1;

10: end if
11: end for
12: end for
13: for i = 1 : n do
14: Calculate Coni(N +m) according to Eq. (16);
15: if Coni(N +m) < Conth then
16: {P} ← {P} \ Pi;
17: for j = 1 : W do
18: {Pj} ← {P} ∪ Pj ;
19: Calculate Het(Pj);
20: end for
21: Service set P̂ ← argmax

{Pj}
Het(Pj);

22: Initialize Nj , Conj(0) of the executor Pj ;
23: else
24: Coni(N)← Coni(N +m);
25: end if
26: end for
Output: Result sequences {ŷk}.

Pi is attacked intensively by attackers.

Assume that the result determined by the arbiter is
“correct”. We use T+

i to indicate that Pi made a cor-
rect judgment and T−

i to indicate that Pi made an in-
correct judgment. πN+m(T

+
i ) denotes the prior prob-

ability that Pi can make a correct judgment after the
N +mth adjudication, πN+m(T

+
i ) = coni(N). Sim-

ilarly, πN+m(T
−
i ) = 1− coni(N).

The posterior probability that Pi can make a correct
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judgment after the N +mth adjudication is,

P (T+
i | Em(N)i) =

πN+m(T
+
i )P (Em(N)i | T+

i )

P (Em(N)i)
,

(15)
where

P (Em(N)i | T+
i ) =

∑
α∈{+,−}

P (Tα
i )P (Em(N)i | Tα

i ).

P (T+
i | Em(N)i) is the latest confidence factor of

the executor, denoted as coni(N +m).
The above process is referred to an m-order con-

fidence factor posterior updating, where m is the step
size. At present, the confidence of Pi can be calculated
from Eq. (10),

Coni(N +m) = coni(N +m) · γi(N +m). (16)

The steps for adjudication and confidence updating
are shown in Algorithm 2. The first step in this pro-
cess is taking every m adjudications as a cycle to col-
lect the historical adjudication information Em(N)i.
In each adjudication, the posterior probabilities of Fi

andF0 are calculated by Eq. (11) and Eq. (13), respec-
tively. The result with the largest posterior probability
is regarded as the correct output ŷ. The total number of
errors made by Pi in these m adjudications is recorded
in Em(N)i (line (1)-(12)).

Then, according to Eq. (16), Coni(N + m) can be
calculated in combination with historical adjudication
information Em(N)i. Meanwhile, for each executor,
the relationship between Coni(N +m) and Conth is
determined. If Coni(N+m) < Conth, Pi is removed
from the service set {P}. The executor that minimizes
the current heterogeneity is selected from the wait-
ing set to compose

{
P̂
}

. Coni(0) is initialized by
Eq. (10). If Coni(N +m) ⩾ Conth, Coni(N +m) is
taken as the updated confidence. At present, the cur-
rent round of adjudication and confidence updating is
done.

VI. EXPERIMENTAL ANALYSIS

We implemented our FBAMD framework in Python
and verified its security, stability, and efficiency on the
real dataset. The FBAMD framework is based on the
DHR structure, which has the advantage of high de-

fense performance against different attacks. We de-
ployed multiple machine learning sub-models and ap-
plied individual and hybrid attacks on each model.
We implemented Logistic Regression, Support Vec-
tor Machine (SVM), K-Nearest Neighbor (KNN), and
Decision Tree as four sub-models, using the numpy,
sklearn, and secml packages. We also constructed two
different DHR models using these sub-models. Jia et
al. [49] demonstrated the effectiveness and robustness
of Bagging against poisoning attacks, and we built our
model according to this strategy. On the attack dimen-
sion, we chose the Statistical-based Poisoning Attack
(StatP) [33] against Linear Regression, the Adversar-
ial Label Flip Attack (alfa) [35] against SVM, and the
poisoning attack [45] against Logistic Regression (ab-
breviated as Logi). The poisoning rate for each poi-
soning attack is set to a fixed value α = 0.2, namely,
there are 20% of the poisoning samples in the training
set for model training. In addition to the three indi-
vidual attacks mentioned above, we balanced the three
poisoned samples to deploy a Mixed attack with the
same total poisoning rate of 20%. On the attack di-
mension, except for our FBAMD, we considered the
defense strategies including TRIM against linear re-
gression [33], a defense algorithm using Kernel dis-
tance in the Local Intrinsic Dimensionality calcula-
tion (K-LID-SVM) against SVM [35], and the voting-
based DHR [43] (referred to as DHR). We use three
main metrics for evaluating our algorithms: classifica-
tion accuracy for all models, confidence fluctuations
for sub-models, and the updating frequency of execu-
tors in FBAMD.

Dataset. We used the public darknet traffic classifi-
cation dataset CIC-Darknet2020 [28] as an example in
our experimental evaluation. The Darknet dataset con-
sists of 158,659 records in total. There are 134,348
benign samples and 24,311 darknet samples. This
dataset is created to cover Tor and VPN traffic respec-
tively by amalgamating two public datasets, namely,
ISCXTor2016 and ISCXVPN2016, with the goal of
effectively classifying benign and darknet traffic. We
chose to utilize all 76 statistical features in the data and
sampled 40,000 data in a category-balanced manner to
construct the data in stream form. In each independent
experiment investigating the comparison of different
attacks and defenses, we randomly selected 2000 data
as the training set and 1500 data as the test set, tested
independently 5 times, and reported results as aver-
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Figure 5. The optimal performance, the worst performance, the average performance of four sub-models and the perfor-
mance of DHR and FBAMD when under Logi, StatP, and alfa attack at step size 30, 50, and 100, respectively.

Figure 6. The optimal performance, the worst performance, the average performance of four sub-models and the perfor-
mance of DHR and FBAMD when under Mixed attack at step sizes 30, 50, and 100, respectively.
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Table 3. Classification accuracy of TRIM, K-LID-SVM, DHR, and FBAMD under different attack scenarios at a poisoning rate of 0.2.
FBAMD has the highest accuracy against all kinds of attacks.

Defense
Attack

None Logi [45] alfa [35] StatP [33] Mixed

Logistic 83.20% 72.97% 78.86% 79.13% 75.27%
Logistic with TRIM [33] 82.36% 82.45% 83.80% 83.74% 83.80%
SVM 87.97% 84.47% 79.75% 82.62% 83.51%
SVM with K-LID-SVM [35] 89.92% 87.40% 86.52% 85.29% 86.53%
DHR[43] 90.37% 88.75% 87.31% 90.18% 87.93%
FBAMD 92.46% 94.60% 92.13% 92.60% 91.80%

ages over 5 runs. For models that require a validation
set, the test set is divided equally into a test set and a
validation set.

Security. We performed experiments on the darknet
dataset to evaluate the classification accuracy of differ-
ent models when under attack. We chose Logi, StatP,
alfa, and Mixed poisoning attacks to poison the train-
ing set and set different confidence updating step sizes
of 30,50,100, respectively, with the rest of the settings
as described previously. We recorded the optimal per-
formance, the worst performance, and the average per-
formance of four sub-models in each round and com-
pared them with the performances of two DHR mod-
els. Figure 5 shows the classification accuracy of three
individual attacks Logi, StatP, and alfa at different step
sizes, while Figure 6 is under Mixed attack. We high-
light several interesting observations and remarks for
Figure 5 and 6.

First, we point out the following observations.
(1) DHR’s performance is comparable to the aver-

age performance of the four sub-models and slightly
above the average performance. For instance, the per-
formance of DHR is similar to the four sub-models’
average performance and even identical in some cases.
From the perspective of statistics, this result is con-
sistent with the voting-based adjudication, essentially
averaging the results of each sub-model.

(2) The overall performance of our FBAMD is
higher than DHR and can approximate the optimal
performance of sub-models. Under individual attacks,
FBAMD can achieve the optimal performance of sub-
models, which indicates that FBAMD is not affected
by targeted attacks. Under hybrid attacks, FBAMD
performs better than DHR, which demonstrates that

systems deployed with FBAMD in real-world scenar-
ios can maintain an optimal defense when encounter-
ing hybrid attacks in cyberspace. Even if some ex-
ecutors are breached by attackers and show the worst
performance, FBAMD’s performance is still on par
with the optimal performance (Theoretically, if an at-
tacker can breach all sub-models at the same time, then
FBAMD’s performance will also be significantly de-
graded). For instance, the worst model has an error
rate of 30% in Figure 6C, while FBAMD shows less
than 10% and is only 5% more than the model with
optimal performance.

(3) We observe an occasional jitter in the classifica-
tion accuracy at different step sizes. For instance, in
Figure 6B, there is a clear trend of decreasing after the
8th run, and it returns to normal in the 10th run. With
the reduction of confidence, this phenomenon occurs
due to a significantly large number of errors made
by sub-models. Before the 10th run, the sub-model
with the current confidence dropped below the thresh-
old was replaced, ensuring the stability of the subse-
quent run. A closer inspection of the figures shows
that the interval between jitters increases as the step
size increases, which is quite revealing. These results
suggest that jitter can be avoided to some extent by
choosing the right step size. We will discuss the jitter
phenomenon next.

Then, we make a few remarks about the sub-models
as follows.

(1) In this paper, sub-models are regarded as execu-
tors, and the selection of sub-models should obey the
principle of “Dynamic, Heterogeneous, Redundancy”.
We picked these four sub-models as they have the
same classification function with different fundamen-
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Table 4. Confidence of the four sub-models Logistic, SVM, Tree, KNN when FBAMD is subjected to different attacks at step size 50. The
bolded position is where the sub-model replacement is performed.

Attack Model 0 1 2 3 4 5 6 7 8 9 10

Mixed

Logistic 0.664 0.516 0.502 0.349 0.534 0.411 0.602 0.459 0.587 0.434 0.634
SVM 0.700 0.570 0.445 0.647 0.574 0.415 0.667 0.540 0.503 0.343 0.712
Tree 0.751 0.603 0.536 0.436 0.751 0.645 0.541 0.492 0.744 0.572 0.566
KNN 0.708 0.593 0.506 0.422 0.795 0.570 0.553 0.422 0.682 0.511 0.528

Logi

Logistic 0.664 0.483 0.620 0.399 0.499 0.476 0.625 0.477 0.557 0.509 0.454
SVM 0.707 0.576 0.481 0.709 0.568 0.484 0.716 0.541 0.510 0.370 0.693
Tree 0.803 0.651 0.576 0.466 0.787 0.664 0.537 0.506 0.427 0.737 0.652
KNN 0.781 0.629 0.540 0.431 0.718 0.623 0.514 0.440 0.740 0.574 0.508

StatP

Logistic 0.688 0.562 0.489 0.610 0.471 0.606 0.578 0.464 0.651 0.469 0.641
SVM 0.722 0.597 0.508 0.467 0.707 0.604 0.512 0.421 0.736 0.537 0.486
Tree 0.743 0.655 0.546 0.461 0.779 0.653 0.529 0.484 0.723 0.666 0.540
KNN 0.737 0.579 0.475 0.709 0.639 0.503 0.480 0.665 0.587 0.470 0.677

alfa

Logistic 0.654 0.525 0.499 0.562 0.476 0.519 0.526 0.412 0.631 0.477 0.686
SVM 0.674 0.532 0.437 0.637 0.541 0.398 0.667 0.561 0.509 0.345 0.686
Tree 0.757 0.633 0.534 0.458 0.801 0.637 0.539 0.501 0.426 0.725 0.663
KNN 0.733 0.610 0.534 0.454 0.806 0.600 0.558 0.455 0.683 0.512 0.520

tals, reflecting heterogeneity and redundancy. When
the threshold drops below 0.5, we cleaned and re-
placed the sub-model, which demonstrates dynamic.

(2) The essential difference between the four sub-
models is that the fundamentals used to implement
the classification function are different, so an attacker
can’t design an algorithm to target all four sub-models
simultaneously. For example, the Adversarial Label
Flip Attack (alfa) [35] is a targeted attack method
against the structure of Support Vector Machine, so its
utility against Decision Tree will be greatly reduced.
The greater the difference in structure between the
sub-models (heterogeneity), the less effective the at-
tack will be.

(3) The sub-models are independently parallel in
DHR. Consequently, the overall runtime complexity
of FBAMD is the worst of the sub-models plus a very
small constant complexity. The sub-models in DHR
are base models without any defense strategies im-
posed, which are less difficult to implement. More
classification sub-models can be deployed in practical
scenarios.

(4) For experimental convenience, we only intro-
duced four kinds of sub-models. Different kinds of

sub-models reflect heterogeneity in hardware (com-
plexity), and different parameters of similar sub-
models reflect heterogeneity in software (diversity)
[50].

(5) In our experiment, the first step for new sub-
model generation is to get samples from the poison-
ing dataset, and the samples are split the same as in
the previous experiment. Then, the model is trained
and the F1-score is calculated as the initial confidence
Coni(0). Finally, the task threshold Ni is obtained by
sampling from the normal distribution.

In Table 3, we detail the classification accuracies of
TRIM, K-LID-SVM, DHR, and FBAMD under dif-
ferent attack scenarios. With the total poisoning rate
α = 0.2, we record the mean classification accuracy
value from five testing rounds in the table. Our re-
sults confirm that the security of FBAMD is the high-
est in various attack scenarios. Compared to the two
defense strategies TRIM and K-LID-SVM, FBAMD’s
accuracy is on average 10% higher; compared to DHR,
FBAMD dominates and accuracy can be above 90%
in all cases. The single most striking observation to
emerge from the data comparison is that TRIM and K-
LID-SVM are only effective in defending against Logi
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and alfa attacks, respectively, and perform poorly in
defending against other attacks. This demonstrates the
shortcoming of passive defense. Only when the type
of attack is known can the appropriate defense strategy
be used for effective defense. On the other hand, as
active defense strategies, DHR and FBAMD maintain
high classification accuracy in the face of various at-
tacks. Simultaneously, FBAMD is more dynamic than
DHR, takes more information into account, and has
better defense results.

Stability. In the experiments to assess the stabil-
ity of FBAMD, we keep the model, dataset, poisoning
rate, attack type, etc. the same as in the above exper-
iments. Confidence fluctuations between sub-models
are used as a measure to evaluate the stability of the
model. When under attack, if the confidence fluctua-
tions of each sub-model are trendless, then the adju-
dication of FBAMD will strictly base on the current
confidence according to Bayesian theory. The high-
confidence output is given a relatively large weight.
Conversely, some particular fluctuations of the sub-
model will lead to the jitter phenomenon described
above in the system.

The jitter phenomenon is expressed as a simultane-
ous decrease in the accuracy of each sub-model, DHR,
and FBAMD, whose occurrence is caused by multiple
reasons. Since each sub-model works independently,
its accuracy degradation is only related to its current
working state. Furthermore, there is a strong correla-
tion between the results of DHR and sub-models. The
decrease in FBAMD’s accuracy is on the one hand due
to the output of wrong results by high-confidence ex-
ecutors. On the other hand, the uniformly distributed
confidence level results in no sub-model that can cor-
rectly lead Bayesian adjudication, with an increasing
weight of the randomness factor.

Table 4 provides the numerical variation of the four
sub-models’ confidence at a step size of 50 under dif-
ferent attacks in detail. We have bolded the loca-
tion where the sub-model replacement was performed
(Coni(N) < 0.5). It is apparent from this table
that the locations where the jitter phenomenon appears
are accompanied by a large number of replacements
of sub-models simultaneously. The result suggests
that there is an association between jitter and the re-
placement of sub-models. Consequently, when per-
forming FBAMD, we can avoid the jitter phenomenon
by selecting submodels with large heterogeneity. In

addition, an appropriately higher step size can make
FBAMD gain high accuracy and stability.
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Figure 7. Frequency of sub-model replacement when the
confidence update step size is 30, 50, 100 and the task
threshold mean µ is 1x, 2x, 3x step size.

Efficiency. We measure the operational efficiency
of FBAMD using the updating frequency of the sub-
models. In practice, we need to balance the secu-
rity gains from dynamic replacement with the service
disruptions caused by replacement. Ideally, we hope
model replacement occurs with each confidence up-
date, but do not want to replace too many at once.
In FBAMD framework, the confidence is not only de-
creased by the posterior update of the confidence fac-
tor coni(N), but also by the natural decrease of the
decay factor γi. The selection of the task threshold Ni

in the decay factor γi will directly affect the decline
rate of confidence. As shown in Figure 7, we present
the intercorrelations between the number of replace-
ments (Frequency) and the threshold at different step
sizes. We set the mean of the normal distribution µ of
the task threshold Ni in the decay factor γi to be 1,2,3
times the step size and the variance σ to be 1/10 of the
corresponding mean value µ.

It is apparent from this figure that replacement fre-
quency shows a decreasing trend with increasing step
size (independent of the task threshold). When the
mean of the normal distribution µ is 1-time step size,
frequency is around 2, which may lead to the jitter phe-
nomenon. When µ is 3 times the step size, frequency
is less than 1. The long operation of a certain execu-
tor may allow an attacker to obtain more information
and increase the risk of system exposure. In summary,
we suggest choosing 2 times the step size as the mean
value of the task threshold and setting the threshold

18 China Communications



value to 0.55 and the step size to 100.

VII. CONCLUSION

In this paper, a comprehensive theory of mimic de-
fense from the perspective of functional implementa-
tion named FBAMD is proposed. We first introduce
the extraction of common features of executors’ vul-
nerabilities and the division of the mapping rule ta-
ble (i.e., first and second error types). Then, a het-
erogeneity metric is defined based on different orders
of symbiotic vulnerability and their CVSS scores. A
confidence metric dynamically updated with task flow
is designed, which can ensure certain dynamics and
controllability consisting of a confidence factor and a
decay factor. Additionally, to solve the problem of the
current adjudication mechanisms’ over-reliance on the
relatively-correct axiom, we propose a new adjudica-
tion mechanism under a probabilistic framework. Ac-
cording to Bayesian theory, this mechanism can up-
date the confidence using the adjudication result infor-
mation, which provides the mimic system with adap-
tive capability. Experimental results under a variety
of settings have shown the outstanding security perfor-
mance and stability of FBAMD against hybrid attacks.
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